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SU M.RY

A new two parameter family of life length distributions

is presented which is derived from a model for fatigue. ThIs

derivation follows from considerations of renewal theory for

the i,-mber of cycles nveded to force a fatigue crack extension

to exceed a critical value. Some closure properties of this

family are given and some comparisons made %-ith other families

such as the lognormal which have been previously used in

fatigue studies.
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1. INTRODUCTION

It is well known that for the amount of fatigue data which can usually

be obtained almost any two dimensionAl parametric family of distributions

can be made to fit reasonably well. In fact, in the region of central

tendency the lognormal, the Weibull, the Camrna, etc., can all be fitted by

parametric estimation and because of the relatively small sample sizes hardly any

can be rejected by, say a Chi-square Goodnesn of Fit test. However, when

it becomes a question of predicting the "safe life" say the one thousandth

pe.rcentile, there is a wide discrepancy between these models.

For this reason a family of distributions which Is obtained from

considerations of the basic characteristics of the fatigue process should

be more persuasive in its implications than any ad hoc family chosen for

extraneous reasons. In this paper we derive, using some elementary renewal

theory, a two parameter family of nonnegative random variables as an

idealization of the number of cycles necessary to force a fatigue crack

to grow to a critical value. We then examine cone of its relevant

properties.
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2. A M1ODEL FOR TIE DISTRIBUTION OF LIFE

We propose a basic framework and notation Which is similar to that

used previously in 3 1. We consider only standardized material spciei-s =

which are subjected to fluctuating stresses by 6 periodic loading. By a

load (or load oscillation) we mean a continuous unimodal function on the

unit interval, the valur of which at any time gives the sirens imposed

by the deflcection of the specimen. Let tile 2,... be the sequence of

loads which are to be applied at each oscillation so that at the ith

oscillation load 4i s imposed. We suppose that the loading is ccZL-

in the sense that for some m > 1 and all il....,m

Lj+i -I m+i for all j 0 k (2.1.1)

and the loading is continuous so that for alL i-1,2 ....

1 £+1 (0) ipi) (2.1.2)

Hence the +l) at is the loading (9 . -- -

h We assume that fatigue failure is due to the initiation, growth and

ultimate extension of a dominant crack. At each oscillation this crack is

extended by some amount which is a random function due to the variation in

the material, the magnitude of the imposed stress and a certain number of

the prior loads and perhaps the actual crack extensions caused by the

prior loads in that cycle.

Thus we now make our first assumption

l' The increr;ental crack extension Xi  following the application

thof the i oscillation is a random variable with a distribution which

depends upon all tl'o loads aznd actual crack extensions wl.ich have

preceded it in that cycle.
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[ The crack extension during the (J+i) a t cycle is

SY S X +--"+ X for j-O,1,...,

where XjM+1 is the (possibly microscopic) cract, enensimv following the

load Zi applied in the i tl oscillation of the Q41)at cycle.

It follows from Aumption I1*, regardle.s of how much dependence

exists between the successive random extensions per oscillation in eacl

cycle, that the random total crack extcnslorr: per cycle are

Independent. Our notation will 1-e

In y
nn J.,lJ

which has distribution function

H (w) - P(W < w], for n-1,2._~~ n "1o"

It follows fror. elementary probability considerations, see p. 289, f6],

that the distribution of C, the number of such cycles until failure, In

the case fa.lure is defined as the crack length exceeding some fix,.d

cri-t-Ical length -w -for the first time, Is

I PLCCn) - I - H n(,w). (2.2)

If we suppose thnir we are dealing with a long cycle of -., 1llations

which Is as complex as the ground-air-ground cycle In acrorautical failul.

studies, it might be reasonable to assume 'Ahat each cycle Itself consifst

of a large number of distinLt phases of loading, Even though the total

crack extension per cycle is the sum of randLyn varfiaes which are nc-t.

I
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might be sufficiently large to make it reasonable to assume that

the total crack extension per cycle ia normally distributed.

Thus we could formally make a secoad assumption

2* The total crack extension Y due to the jth cycle is a

2
normal random variable with mean and variance 2 for all

J-l&2 &...

.s a r'ssible olterntive one could poetulate that the distribution

of the crack extension might be different for the earlier cycles than it

would be for the later ones. One of the first s.ppositions might be to

make the distribution of the extension per cycle depend upon the size of

the crack at the start of the cycle. One such assumption and the result-

ing distribution of the total crack length at the end of n cycles is

presented in Section 4. We do not make that assumption here

but instead, for reasons of simplicity, proceed with the study of the

Implications of the one above.



Note that the crack extensioti per cyc].e must be a nonnegative random

variable. Thus in order for the Assumption 2* to apply we must regard as

negligible the probability with which this n,,nil variable become! negative

e.g. by assuming

S> 3 . 2.2.1)

It now follows from Assumptions 10 and 2* that the Y are independe'nt

and identically distributed normal random variables. Thus we have as the

distribution of C from (2.2)

P[C.~n] - 9?(i~ (2.3)vn c rn b

where 91 is the distrioution function of the standard normal varlate with

zero mean ard unit variance defined for - < y . by

f I) 2 2-. (2.4)

We write

a jo a 8(2.5)

and replace n by the nonnegatrve real varial-1v t > 0. if we now denote

the continuous uxtonzion of the discrete r,.udwr variable C by T, a

continuous nonnenntive randoin variable, then it follos by (2.3) and (2.5)

that T has the life distributioa

F't:),0) - (t/ )I for t 0 (2.6)
where a

a>0, a>0
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and

t - &- (2.7)

This two-parameter family of distributions is a plauialble model for the

distriburion of fatige life. The set of all life distributlons of the

form (2.6) for a.0 - 0 wil be denoted by OF and most of this paper

will be devotcd to the study of its properties. We shall also refer to

the law which has the distribution (2.6) with the somewhat shorter

notation F(ct,B).

Of course, there are motivational derivations for other distributions

as well. The Weibull distribution, which is well known for 1-s applications

as a life length distribution and for fatigue life in particular, is obtained

as a special case of the extreme value distributions, see p. 302 [7].

The Gamma family has also been obtained as a distribution of life by

utilizing a model of a bundle of strands which are 3upporting a tensile

load, see [4].

It is instructive to make a comparison between the derivation of

the family of distributions 9 and an appropriate adaptation of the

classical heurib'ic argument, found for example p. 219, Cram6r [5], as

it might be used to obtain the loguormal distribution of the time until

failure itt fatigue. We present this derivation in Section 5.

J.
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3. SOME PROPERTIES OF f-

Let T" have the distribution defined in (2.6).

Note that T is a two-paramrter random varinble with 6 as a

location pararneter Ainre it is the median of the distrbution. (W"h'

later that S Is neither the mode nor the mean.) Notice also that a ii

a shape parameter atid a scale paraeter. As we have seen - .(T/3)

ia a stRndird notttal randor, variabic -with mean zero and unit varlance.
2

If we let X be (0, we see that, in distribution,

2X ,(T/,). (3.1)

If we define tho function , by

0 " (2x) for all real x, (3.1.5)

then

T s- X) (3.2)

From elementary algebra we find that

W(x) [(W 12  (3.3)

where

OW x + 47+ . (3.4)

So by (3.2)

2../7

T- $[1 + 2X2 + 2X, (3.5)

2
where X is 2)(O, -). Hence we have im,-neiat,,ly

4.

2
E(T) - (1 + 2-) (3.5.1)
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E(T) 2(1 + 2a2 + 3a4)

v(r(T) - ( 1a)2(1 + 5-) (3.5.2)

and we note that for fixed a the variance of T increases as the scale

parameter (median) 0 increases. This is not true for the lognormal

distributian but 4mpirical evidence show" that it is tr-ue for the fatigue

lives themselves.

By noting that

= -x + / - P(-x) (3.5.3)

we see that, whenever -X has the same distribution as X, we have by

(3.3), in distribution,

p p(X) and - , p(X). (3.6)
PWX (X)

Thus there follows immediately from (3.2) the

Theorem 3.1. If T has a fatigue life distribution F(a) in

then has a distribution in 9 given by F(a, Moreover, for

real a > 0, the random variable aT has a distribution in 9 given by

It is known that every random variable with distribution defined by

(2.2) for which the Y are nonnegative and have densities whic, are P61ya

frequency functions of order 2, has an increasing failure rate, see [1].

We now show that the random variable T does not have this property and

moreover the failure rate does not even increase on tho average vhich is a

weaker cond :ion, se, [2]. However, it Vist barely fails to have this ]ast

condition satisfied.
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Remark 3.2. T does not have a failure rate which increases on

the average.

Proof. Without loss of generality take a 0 1 and define

WrIting Mi ll ratio

-C " [1 - 9(0)]t l'(0)

then applying L'Hospital's rule to Q(t)/t for t - and using (4.1.1)

of the next section we obtain

2 I 9?' [ t) 1'( t) L (1- t -2 )
t " 9 E-t (t)] 2Ml,(t)] "

We know that as , we have

1' -i 0(&-).

Hence _Um~ . but Q(l) >
t- M t 2 2 This proves our contention

that does not always increast il
t

Actual numerical calculation shows that -I decreases slowly for
t

t > 1.64 as Figure 1 shows. Since normal random variables do have

densities which are P61ya frequency functions of order 2 the reason the

failure rate can decrease is that our summands fail tu be nonneg.Live with

probability one.

We do not regard this as being a serious shortcoming to our family of

distributions when applied to fatigue, any more than the nezativ'tv of the

normal distribution vitiates its usefulness whrn applied to such thing.- ai;

measureme&nts, which thecoretical],, cannot b uIigacLive.
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4. A SECOND MODEL FOP, Tile DITRIBUTION OF LIFE

In this section we replace the Assumption 2° by the more general

one

2' The crack extension YD+l during th- (n+l)st cycle, given

that the total crack length was s at the start of the cycle,

is a noiinal random variable with mean P + 6s, for some constant
2

6 > 0, and variance a for each n=1,2,...

By formula (2.2), to find the distribution of C it is necessary and

sufficient that we find the distribution of W , called H

By assumption

P[Yn+-l Y I WnS] -

and for n-1

H (Y) -M() " < y < D '  (4.1)

Now by definition, settin_ y -_x - s . . ..

Hn(x) f 91(V-US)dH (s). (4.2)
U+ a n

We can now prove the

Theorep, 4. 1 The total crack lenjht W n, at the end of the

th 2
n cycle, is normal with mean Ln  and variance a where

n 2n
- ~[(+6 n2 2 (l+ )2n-1

(+)n ] 0 2 (4.3)tin & 6 , on ao (1+6) 2-1

Proof by induction. The statement is true for n=l. Assume it truc

for i, then from (4.2)
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where

u -. V .-0
1+6 1+6"

But this we rTcognize as the usual convolution of two normal random

variables and hence the result is

1+l2(x) +2

Hence by simplification we find that

2 = 02 + (1+6)22

In+l = + (1+6) v. Cn+1 + 6

&nd one checks that formulas given do satisfy the recursion relations

(4.3).1i

Strictly speaking a proper distribution, analogous to that

obtained in (2.6), which would be the continuous extension of the

present case, cannot be generated since P[C < < 1.

For, one can see that

P[c n) a ¢ -
n

and as n-*." we have wn/o -L 4 2 1

Of course this would not be of practical significance, since we are

restricting ourselves to situations where - 5 3, see (2.2.1), hence

lim- . 3k/i7 for 0 < 6 < 1, and lim- > 3 for any 6.

n-'- n n
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5. ALIt 1 VT1 OF"IL P 'CU A

In our notation the Ith oscillation is caused by the loading function

Li, and the crack extension depends upon both the loading function and the

aize of the crack already attained at the time when the oscillativn was

begun.

Consider the n loads X,.. which have resulted in a crack

of size W thennP

n 60q )

assuming the incremental growth of the crack is proportional to some

random functional Ln+1 of the loading function 0n+1  imposed at that

time, and some function of the size of the crack 6(W n). Now we have
n

L1  L-+ Ln - (W i-W J ) (Wji 1 ).

Letting n become large we then have the left-hand side becoming

asymptotically a normal random variable, due to the periodicity of

loading, while the right-hand side becomes in the limit

z
f 6(t)dt.Z 0

If we take 6(t) l 1/t then Z becomes asymptotically lognormal.

The important distinction between this derivation and that which

we previously considercd is that while a given nu:ber of identically

distributed sumrands does approach normality as the number gets large,

a random number with large mean of identically distributed summands

does not necessarily do so. Mloreover, we 1:aint.,in that what Is at

quest ion here is the nu-bEr of impulses requircd to exceed a certain

critical crack sizL and it is indced a ranI:: nunber of cvc]v.. which will

be necessary to nc-c--lish this.



6. CONCLU$ION

A derivation, based on plausible physical considerations, for

a family of distributions is, by itself, not a conclusive argument

that such a particular family should be used in life studies. No

family, howcver reasonable its derivation, can be accepted for use in

fatigue life studies until it is confronted with actual fatigue data

obtained under various conditions and the distribution is shown to

represent adequately the life length a which are obtained.

In order to do this one must have the theory of estimation

for this family completed. The derivation of parametric estimators

and the ancillary computing formulas for this family will be presented

in a later study. Also further studies of the application of this

distribution to the calculation of "safe life" will be made. Thus the

confrontations of this family with actual data will be carried out, to

provide the justification for this presentation.

-4

I
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